1,175 research outputs found

    Gemino H. Abad and Alfred A. Yuson

    Get PDF

    Smart Cupboard for Assessing Memory in Home Environment

    Get PDF
    Sensor systems for the Internet of Things (IoT) make it possible to continuously monitor people, gathering information without any extra effort from them. Thus, the IoT can be very helpful in the context of early disease detection, which can improve peoples'' quality of life by applying the right treatment and measures at an early stage. This paper presents a new use of IoT sensor systemswe present a novel three-door smart cupboard that can measure the memory of a user, aiming at detecting potential memory losses. The smart cupboard has three sensors connected to a Raspberry Pi, whose aim is to detect which doors are opened. Inside of the Raspberry Pi, a Python script detects the openings of the doors, and classifies the events between attempts of finding something without success and the events of actually finding it, in order to measure the user''s memory concerning the objects'' locations (among the three compartments of the smart cupboard). The smart cupboard was assessed with 23 different users in a controlled environment. This smart cupboard was powered by an external battery. The memory assessments of the smart cupboard were compared with a validated test of memory assessment about face-name associations and a self-reported test about self-perceived memory. We found a significant correlation between the smart cupboard results and both memory measurement methods. Thus, we conclude that the proposed novel smart cupboard successfully measured memory

    Enabling SmartWorkflows over heterogeneous ID-sensing technologies

    Get PDF
    Sensing technologies in mobile devices play a key role in reducing the gapbetween the physical and the digital world. The use of automatic identification capabilitiescan improve user participation in business processes where physical elements are involved(Smart Workflows). However, identifying all objects in the user surroundings does notautomatically translate into meaningful services to the user. This work introduces Parkour,an architecture that allows the development of services that match the goals of each ofthe participants in a smart workflow. Parkour is based on a pluggable architecture thatcan be extended to provide support for new tasks and technologies. In order to facilitatethe development of these plug-ins, tools that automate the development process are alsoprovided. Several Parkour-based systems have been developed in order to validate theapplicability of the proposal

    EmotIoT: an IoT system to improve users’ wellbeing

    Get PDF
    IoT provides applications and possibilities to improve people’s daily lives and business environments. However, most of these technologies have not been exploited in the field of emotions. With the amount of data that can be collected through IoT, emotions could be detected and anticipated. Since the study of related works indicates a lack of methodological approaches in designing IoT systems from the perspective of emotions and smart adaption rules, we introduce a methodology that can help design IoT systems quickly in this scenario, where the detection of users is valuable. In order to test the methodology presented, we apply the proposed stages to design an IoT smart recommender system named EmotIoT. The system allows anticipating and predicting future users’ emotions using parameters collected from IoT devices. It recommends new activities for the user in order to obtain a final state. Test results validate our recommender system as it has obtained more than 80% accuracy in predicting future user emotions

    Green communication for tracking heart rate with smartbands

    Get PDF
    The trend of using wearables for healthcare is steeply increasing nowadays, and, consequently, in the market, there are several gadgets that measure several body features. In addition, the mixed use between smartphones and wearables has motivated research like the current one. The main goal of this work is to reduce the amount of times that a certain smartband (SB) measures the heart rate (HR) in order to save energy in communications without significantly reducing the utility of the application. This work has used an SB Sony 2 for measuring heart rate, Fit API for storing data and Android for managing data. The current approach has been assessed with data from HR sensors collected for more than three months. Once all HR measures were collected, then the current approach detected hourly ranges whose heart rate were higher than normal. The hourly ranges allowed for estimating the time periods of weeks that the user could be at potential risk for measuring frequently in these (60 times per hour) ranges. Out of these ranges, the measurement frequency was lower (six times per hour). If SB measures an unusual heart rate, the app warns the user so they are aware of the risk and can act accordingly. We analyzed two cases and we conclude that energy consumption was reduced in 83.57% in communications when using training of several weeks. In addition, a prediction per day was made using data of 20 users. On average, tests obtained 63.04% of accuracy in this experimentation using the training over the data of one day for each user

    Nueva plataforma dinamométrica para el análisis y valoración del rendimiento deportivo

    Get PDF
    Un nuevo modelo de plataforma dinamométrica ha sido desarrollado por el Instituto de Biomecánica de Valencia (IBV) y se han fabricado sus primeros prototipos. Permite la medida de la fuerza de reaccipón tridimensional, en momento torsor y el punto de aplicación de la fuerza, a una velocidad de muestre0 de hasta 1000 Hz (500 Hz para dos plataformas). El nuevo diseño se caracteriza por poseer cuatro captadores bidimensionales octogonales mecánicamente desacoplados, placa superior de rigidez optimizada y sensibilidad cruzada mínima

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore